Cambridge IGCSE Physics matches the requirements of the revised Cambridge IGCSE Physics syllabus (0625). It is endorsed by CIE for use with their examination. This Workbook is intended to be used alongside the Cambridge IGCSE Physics Coursebook. It contains exercises that will help students to develop the skills they need to do well in the IGCSE Physics examination. These exercises are arranged by chapter, in the same order as in the Coursebook. The Workbook exercises are designed to develop the following skills: – writing about the concepts discussed in the Coursebook – solving numerical and other problems – thinking about experimental techniques and interpreting results from experiments – drawing and interpreting graphs and other diagrams.
David Sang
Cambridge IGCSE
Physics
Workbook
Answers and workings for the Workbook exercises are included on the Teacher’s Resource.
Workbook
David Sang has taught physics at high school, sixth-form and university level, and now devotes himself to writing textbooks and developing teacher resources. He has written over 100 textbooks, which are used in secondary schools around the world. Other components of Cambridge IGCSE Physics: Coursebook ISBN 978-0-521-75773-7 Teacher’s Resource ISBN 978-0-521-17359-9
David Sang
Completely Cambridge – Cambridge resources for Cambridge qualifications Cambridge University Press works closely with University of Cambridge International Examinations (CIE) as parts of the University of Cambridge. We enable thousands of students to their CIE exams by providing comprehensive, high-quality, endorsed resources. To find out more about CIE visit www.cie.org.uk To find out more about Cambridge University Press visit www.cambridge.org/cie
ISBN 978-0-521-17358-2
Endorsed by
University of Cambridge International Examinations
Endorsed by
9 780521 173582
University of Cambridge International Examinations
Co m ple t Ca el y m Ca br idg Ca m br idg f e re m e q or sou b rce ri ua dg lifi s ca tio e ns
9780521173582 David Sang IGCSE Physics Workbook. Cover. C M Y K
Cambridge IGCSE Physics
Cambridge IGCSE Physics Workbook David Sang
Cambridge University Press 978-0-521-17358-2 - Cambridge IGCSE Physics Workbook David Sang Table of Contents More information
Contents
Block 3 Physics of waves
Introduction
v
Block 1 General physics
1
12
13
48
Sound
48
12.1 Sound on the move 12.2 Sound as a wave
48 51
Light
52
13.1 On reflection 13.2 Refraction of light
53 54
1
Making measurements
1
E
1.1 Accurate measurements 1.2 Density data 1.3 Testing your body clock
1 2 4
14
Properties of waves
54
14.1 Describing waves 14.2 The speed of waves
55 56
Spectra
58
15.1 Electromagnetic waves
58
2
Describing motion
6
E
7 8 11
15
E
2.1 Speed calculations 2.2 Distance against time graphs 2.3 Speed against time graphs
3
Forces and motion
13
3.1 Identifying forces 3.2 The effects of forces 3.3 Falling
13 14 15
4
Turning effects of forces
16
E
4.1 Turning effect of a force 4.2 Calculating moments
16 17
5
Forces and matter
19
E
5.1 Stretching a spring 5.2 Pressure
19 21
6
Energy transformations and energy transfers
23
E
6.1 Energy efficiency 6.2 Energy calculations
24 26
7 8 E
Energy resources
27
7.1 Renewables and non-renewables
28
Work and power
29
8.1 Forces doing work, transferring energy 8.2 Calculating work done 8.3 Power
30 31 32
Block 2 Thermal physics
34
9
The kinetic model of matter
34
E
9.1 Changes of state 9.2 Brownian motion 9.3 Boyle’s law
34 36 37
10
Thermal properties of matter
39
E
10.1 Calibrating a thermometer 10.2 Heat calculations
39 41
Thermal (heat) energy transfers
44
11.1 Convection currents 11.2 Radiation
44 46
11
Block 4 Electricity and magnetism 60 16
17
18
E
19 E
20
21 E
Magnetism
60
16.1 Attraction and repulsion 16.2 Make a magnet 16.3 Magnetic fields
60 61 62
Static electricity
63
17.1 Attraction and repulsion 17.2 Moving charges
63 64
Electrical quantities
65
18.1 Current and charge 18.2 Electrical resistance 18.3 Electrical energy and power
66 67 70
Electric circuits
71
19.1 Circuit components and their symbols 19.2 Diodes 19.3 Resistor combinations
72 73 73
Electromagnetic forces
74
20.1 Using electromagnetism 20.2 Cathode rays
75 77
Electromagnetic induction
78
21.1 Electricity generation 21.2 Transformers
79 80
Block 5 Atomic physics 22 E
23
E
82
The nuclear atom
82
22.1 The structure of the atom 22.2 Discovering the structure of the atom 22.3 Isotopes
82 83 85
Radioactivity
86
23.1 The nature of radiation 23.2 Radioactive decay 23.3 Using radioactive substances
87 88 91 Contents iii
© in this web service Cambridge University Press
www.cambridge.org
Cambridge University Press 978-0-521-17358-2 - Cambridge IGCSE Physics Workbook David Sang Excerpt More information
Block 1
General physics
1
Making measurements A definition to learn density the ratio of mass to volume for a substance
An equation to learn and use density =
mass volume
Exercise 1.1 Accurate measurements To measure a length accurately, it is essential to have a careful technique. Special measuring instruments can also help.
a The diagram shows how a student attempted to measure the length of a piece of wire.
0
1
2
3
4
5
6
7
From the diagram, estimate the length of the wire. ........................................................... b State three ways in which the student could have improved his technique for measuring the wire. ............................................................................................................................................................................................................. ............................................................................................................................................................................................................. .............................................................................................................................................................................................................
Making measurements 1
© in this web service Cambridge University Press
www.cambridge.org
Cambridge University Press 978-0-521-17358-2 - Cambridge IGCSE Physics Workbook David Sang Excerpt More information
E c The diagram shows a set of vernier callipers. Label the following parts of this measuring instrument: vernier scale
main scale
0
1
2
0
jaws
4
3
5
6
7
8
9
10
10
d Determine the diameter of the ball, as measured by the vernier callipers shown on the right. ........................................................... 2
3
0
e A micrometer screw gauge can be used to measure the thickness of a sheet of plastic. What value is shown in the diagram on the right?
012 3
10
25 20
012 3
...........................................................
4
25 20
f During an experiment, a student made the measurements shown in the table below. In the second column, suggest the instrument that she used to make each measurement. Measurement
Measuring instrument
length of wire = 20.4 cm thickness of wire = 4.24 mm thickness of wooden block = 17.5 mm
Exercise 1.2 Density data This exercise presents some data for you to interpret and use.
The table on the opposite page shows the densities of some solids and liquids. Two units are used, kg/m3 and g/cm3.
2 Block 1: General physics
© in this web service Cambridge University Press
www.cambridge.org
Cambridge University Press 978-0-521-17358-2 - Cambridge IGCSE Physics Workbook David Sang Excerpt More information
Density / kg/m3
Density / g/cm3
Material
State / type
water
liquid / non-metal
1 000
1.000
ethanol
liquid / non-metal
800
0.800
olive oil
liquid / non-metal
920
mercury
liquid / metal
ice
solid / non-metal
920
diamond
solid / non-metal
3 500
cork
solid / non-metal
250
chalk
solid / non-metal
2 700
iron
solid / metal
7 900
tungsten
solid / metal
19 300
aluminium
solid / metal
2 700
gold
solid / metal
19 300
13 500
a Complete the last column by converting each density in kg/m3 to the equivalent value in g/cm3. The first two have been done for you. b Use the data to explain why ice floats on water. ............................................................................................................................................................................................................. .............................................................................................................................................................................................................
c A cook mixes equal volumes of water and olive oil in a jar. The two liquids separate. Complete the drawing of the jar to show how the liquids will appear. Label them.
Making measurements 3
© in this web service Cambridge University Press
www.cambridge.org
Cambridge University Press 978-0-521-17358-2 - Cambridge IGCSE Physics Workbook David Sang Excerpt More information
d A student wrote: “This data shows that metals are denser than non-metals.” Do you agree or disagree? Explain your answer. ............................................................................................................................................................................................................. ............................................................................................................................................................................................................. ............................................................................................................................................................................................................. .............................................................................................................................................................................................................
e Calculate the mass of a block of gold that measures 20 cm × 15 cm × 10 cm. Give your answer in kg.
f A metalworker finds a block of silvery metal. He weighs it and he measures its volume. Here are his results: mass of block = 0.270 kg volume of block = 14.0 cm3
Calculate the density of the block.
g Suggest what metal this might be. ...........................................................
Exercise 1.3 Testing your body clock How good would your pulse be as a means of measuring time intervals? Galileo used the regular pulse of his heart as a means of measuring intervals of time until he noticed that a swinging pendulum was more reliable.
In this exercise, you need to be able to measure the pulse in your wrist. Place two fingers of one hand gently on the inside of the opposite wrist. Press gently at different points until you find the pulse. (Alternatively, press two fingers gently under the jawbone on either side of your neck.) You will also need a clock or watch that will allow you to measure intervals of time in seconds. 4 Block 1: General physics
© in this web service Cambridge University Press
www.cambridge.org
Cambridge University Press 978-0-521-17358-2 - Cambridge IGCSE Physics Workbook David Sang Excerpt More information
a Start by timing 10 pulses. ( to start counting from zero: 0, 1, 2, 3, . . . , 9, 10.) Repeat this several times and record your results below.
b Comment on your results. How much do they vary? Is the problem that it is difficult to time them, or is your heart rate varying? ............................................................................................................................................................................................................. ............................................................................................................................................................................................................. ............................................................................................................................................................................................................. ............................................................................................................................................................................................................. .............................................................................................................................................................................................................
c Use your results to calculate the average time for one pulse.
d Repeat the above, but this time count 50 pulses. Record your results below. Calculate the average time for one pulse.
e Now investigate how your pulse changes if you take some gentle exercise – by walking briskly, or by walking up and down stairs, for example. In the space below:
• • •
Briefly describe your exercise. Give the measurements of pulse rate that you have made. Comment on whether you agree with Galileo that a pendulum is a better time-measuring instrument than your pulse.
............................................................................................................................................................................................................. ............................................................................................................................................................................................................. Making measurements 5
© in this web service Cambridge University Press
www.cambridge.org
Cambridge University Press 978-0-521-17358-2 - Cambridge IGCSE Physics Workbook David Sang Excerpt More information
............................................................................................................................................................................................................. ............................................................................................................................................................................................................. ............................................................................................................................................................................................................. ............................................................................................................................................................................................................. ............................................................................................................................................................................................................. ............................................................................................................................................................................................................. ............................................................................................................................................................................................................. ............................................................................................................................................................................................................. ............................................................................................................................................................................................................. ............................................................................................................................................................................................................. ............................................................................................................................................................................................................. ............................................................................................................................................................................................................. .............................................................................................................................................................................................................
2
Describing motion Definitions to learn speed acceleration
the distance travelled by an object in unit time the rate of change of an object’s velocity
Equations to learn and use speed = distance time speed = gradient of distance against time graph distance = area under speed against time graph
E
change in speed time taken acceleration = gradient of speed against time graph
acceleration =
6 Block 1: General physics
© in this web service Cambridge University Press
www.cambridge.org
Cambridge University Press 978-0-521-17358-2 - Cambridge IGCSE Physics Workbook David Sang Excerpt More information
Exercise 2.1 Speed calculations Use the equation for speed to solve some numerical problems.
a The table below shows the time taken for each of three cars to travel 100 m. Circle the name of the fastest car. Car
Time taken / s
red car
4.2
green car
3.8
yellow car
4.7
Speed / m/s
b Complete the table by calculating the speed of each car. Give your answers in m/s and to one decimal place. c A jet aircraft travels 1200 km in 1 h 20 min. How many metres does it travel? ................................................................ For how many minutes does it travel? ................................................................ And for how many seconds? ................................................................ d Calculate the average speed of the jet in part c during its flight. Give your answer in m/s.
e A stone falls 20 m in 2.0 s. Calculate its average speed as it falls.
f The stone falls a further 25 m in the next 1.0 s of its fall. Calculate the stone’s average speed during the 3 s of its fall.
g Explain why we can only calculate the stone’s average speed during its fall. ...................................................................................................................................................... ......................................................................................................................................................
Describing motion 7
© in this web service Cambridge University Press
www.cambridge.org
Cambridge University Press 978-0-521-17358-2 - Cambridge IGCSE Physics Workbook David Sang Excerpt More information
Exercise 2.2 Distance against time graphs Draw and interpret some distance against time graphs. You can calculate the speed of an object from the gradient (slope) of the graph.
Time
D
Distance
C
Distance
B
Distance
A
Time
Distance
a The diagrams A–D show distance against time graphs for four moving objects.
Time
Time
Complete the table below by indicating (in the second column) the graph or graphs that represent the motion described in the first column.
Description of motion
Graph(s)
moving at a steady speed stationary (not moving) moving fastest changing speed b The table below shows the distance travelled by a runner during a 100 m race. Use the data to draw a distance against time graph on the graph paper on the next page.
Distance / m
0
Time / s
0.0
10.0
25.0
45.0
65.0
85.0
105.0
2.0
4.0
6.0
8.0
10.0
12.0
8 Block 1: General physics
© in this web service Cambridge University Press
www.cambridge.org
Cambridge University Press 978-0-521-17358-2 - Cambridge IGCSE Physics Workbook David Sang Excerpt More information
c From your graph, answer the questions that follow: How far did the runner travel in the first 9.0 s? ................................................................ How long did the runner take to run the first 50.0 m? ................................................................ How long did the runner take to complete the 100 m? ................................................................ d Use the gradient of the graph to determine the runner’s average speed between 4.0 s and 10.0 s. On the graph, show the triangle that you use.
e On the graph axes on the next page, sketch a distance against time graph for the car whose journey is described here:
• • •
The car set off at a slow, steady speed for 20 s. Then it moved for 40 s at a faster speed. Then it stopped at traffic lights for 20 s before setting off again at a slow, steady speed. Describing motion 9
© in this web service Cambridge University Press
www.cambridge.org
Cambridge University Press 978-0-521-17358-2 - Cambridge IGCSE Physics Workbook David Sang Excerpt More information
f The graph on the right represents the motion of a bus for part of a journey. On the graph, mark the section of the journey where the bus was moving faster.
1000
Distance / m
800
600
400
200
0 0
20
40
60
80
100
Time / s
g From the graph in part f, calculate the following:
•
the speed of the bus when it was moving faster
•
the average speed of the bus.
10 Block 1: General physics
© in this web service Cambridge University Press
www.cambridge.org